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Abstract—Radiative transfer has been considered within a plane participating slab assuming diffuse
emission at one boundary and diffuse reflection at the other boundary. The medium is assumed to be a zero
temperature one so that emission is neglected and only absorption and scattering (according to a linearly

anisotropic law) are assumed within the slab.

A rigorous solution is developed following a constructive procedure based on projectional methods: the
resulting formulae have been numerically processed to obtain the distribution of the physically relevant

variables for some significant situations.

The results from the rigorous approach are then used as reference values to test the reliability of the results
from some of the simplified approaches used in the literature (P, approximation and kernel substitution).

NOMENCLATURE
a, optical half-thickness;
¢, albedo;
E,, nth exponential integral;
I, angular radiation intensity;
o, total radiation intensity;

q = I,, net radiative flux;
g*, q", forward, backward radiative flux.

Greek symbols

a, emitted power;

U, cosine of the angle between the direction of
the radiation intensity and the positive ©
axis;

fo, weighted average of the cosine of the scat-
tering angle;

o, diffuse reflectivity of the boundary 7 = a;

T, optical coordinate.

1. INTRODUCTION

IN SOME recent papers rigorous semi-analytical ap-
proaches to the solution of the radiant energy balance
equation in a plane participating slab have been
proposed, when radiation can be emitted and reflected
by the bounding surfaces [1,2]. On the other hand
many practical problems of physical interest in ra-
diative transfer are usually investigated through pure
numerical schemes, or by resorting to very simple
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approximate techniques [3-5], such as kernel sub-
stitution, and P, approximation. In any case, many
authors confine themselves to the evaluation of in-
tegral quantities, like hemispherical reflectivity and
transmissivity, and accurate results for the angular
radiation intensity are seldom available. This paper
deals with the problem of a low temperature parti-
cipating medium, which can scatter anisotropically
and absorb, subject to a diffuse radiation emitted by
one of its boundaries, while the other is assumed to
reflect in a diffuse way. This physically-meaningful
problem has been already studied, at least in some
particular cases, and partial results have been given
through either rigorous (Case’s method), or appro-
ximate, or fully numerical procedures. The present
solution is constructed following the exact theory
presented in [2] and [6], which seems to be the most
straightforward and flexible among the rigorous ones,
and a complete solution is easily obtained for the
directional fluxes and all main quantities relevant to
radiative transfer. Comparison is made with previous
existing results; P, approximation and kernel-
substitution techniques are also worked out to cover
the situations examined. Since the present results are
very accurate and reliable they should be used as
reference results to test the validity and the accuracy of
the numerical and simplified approaches given in the
literature.

2. THE RIGOROUS APPROACH

2.1. Theory
According to the theory presented in [6], the
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angular radiation intensity can be expressed, for the
physical problem described in the Introduction and in
the case of linearly anisotropic scattering, in terms of

te ac
its first two Legendre moments as
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where —a <1< 4,0 < u < 1, I, is the average cosine
of the scattering angle, I, is the total incident radiation,
I, = g the net radiative heat flux, and E, denotes the
general exponential integral function [7]. Boundary
conditions are already incorporated in equations (1),
where « is the total power emitted by the boundary
7 = —a, and p the diffuse reflectivity of the boundary
7 = a. The moments I, and I, are in turn solutions to
the system of coupled linear integral equations
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whose kernels are the same as in [6], whereas the
known terms take the form

Fit) =20E;(a + 1) + (— 1)'4paE;(2a)E, , {a — 1),
(3)
i=0 1L

The system is then solved by projection, by resorting to
the Legendre polynomials P,(t/a) as coordinate func-
tions. The result is
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for the angular radiation intensity. The partial ra-
diative fluxes ¢ *(r) and g (1), withg=¢ ¥ —¢~,can be
also explicitly evaluated as
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The functions U}{z), Wz, 1), Gi(r) and the numbers D,
are integrals involving exponential integrals and Leg-
endre polynomials; they can all be written in closed
analytical form by means of elementary and special
functions, as shown in [6].

At this point only the evaluation of the unknown
numbers 5 and n}, which are needed as expansion
coefficients, must be performed. They follow easily
from the solution of the linear algebraic system

; Z Z [(2m+ l)(2n + 1)]‘ 2

rlm = G:r{n n’
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where the matrix elements G, are given once more in
[6], and the known terms are now

1/2
Fi = (2'"2: 1) 2aDL[(— 1) + (— 1)'2pE;(2a)].
(8)

2.2. Results

In order to investigate the effects of forwardness of
the scattering and of the reflectivity of the boundary,
the extreme values of i, [ie fp=1/3 (forward
scattering), —1/3 {backward scattering)] and p (ie.
p =0, 1) have been considered for any of the optical
thickness examined. Investigation has been limited to
situations where scattering phenomena are relevant
(¢ = 0.9) and furthermore, the case of isotropic scatter-
ing (fi, = 0) has always been considered as a reference
case, even if, for the sake of clearness, the results for this
case are often omitted in the following figures since
they can be located easily between those for the two
extreme values of f,.

All the quantities relevant to radiative transfer (I, q)
are defined as moments of different order of the
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angular intensity I{z, u) and therefore attention should
be given to the distributions of such a variable.

Figure 1 gives the distribution of I(z, u) at different
positions within the slab for g, = 1/3 and g, = —1/3
in both the cases of a transparent (p = 0) and totally
reflecting (p = 1) boundary at t = a. Results are given
only for @ = 1, but the same effects will occur for any
value of g, even if their relevance depends on q, with
special regard to the influence of p.

Since the probability of a photon to proceeding
further within the slab increases when the forwardness
increases, in the transparent boundary case, I{z, u} is,
for any 1, higher for fi, = 1/3 than for i, = —1/3 when
u > 0, while the opposite occurs when g < 0. When a
totally reflecting boundary is considered this trend still
occurs in points far away from the reflecting boundary,
while close to it, in a region whose width depends on q,
the I(t,u) distribution is, for any u, higher in the
forward scattering case than in the backward one since
more photons are available for reflection when
flo = 1/3.

The distributions occurring for ¢*, ¢~ and g are
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FiG. 1. Angular distribution for the radiation intensity Iz, u) for a=10, ¢=09. (—— [F,=1/3;
e flg=1/3}.
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F16. 2. Forwards (g * (7)), backwards (¢ " {t)) and net (g{r)) radiative flux for a = 1.0,¢ = 0.9. (—— i, = 1/3;
——— g = —1/3).

given in Fig. 2 and the resulting trends can be
explained straightforwardly on the basis of the results
given in Fig. 1.

Whatever the value of p, the g curve for the
backward scattering is always lower than that for the
forward case, the difference between the two curves
decreasing when p is increased.

The influence of the optical thickness on the I,
distribution can be grasped from Fig. 3, where the
distributions of such a variable are given for three
different values of g, significant of situations where the
optically thin and thick limits are approached as well
as of an intermediate situation.

The crossing occurring between the curves at dif-
ferent values of fi, for any p and a can be explained
once more on the basis of the arguments used to justify
the results of Fig. 1: the curve for g, = 1/3 is lower
than that for g, = —1/3 close to the boundary
7 = —a, while the opposite occurs close to boundary
T = q,since in these two regions of the slab the photons
available for absorption in the forward-scattering case
are respectively less, and more than in the backward
case (it must be recalied that I, is proportional,
through (1 — ¢}, to the local volumetric rate of energy
absorption). For p = 1 the curves are strongly in-
creased and flattened for low values of g, while they are
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F1G. 3. The total radiation intensity I,(r} as a function of t/afor c = 09, ——— fiy = 1/3; —— 3, = 0;
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FiG. 4. The hemispherical transmissivity T and the hemi-
spherical reflectivity R of the slab as a function of the optical
thickness 2a. Ho=1/3;— —jy =0;——jig = —1/3.

noticeably raised only close to the reflecting wall for
intermediate-high values of a. Finally, it is worth
considering the hemispherical transmissivity T and
hemispherical reflectivity R of the slab defined as

1
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respectively. These two quantities give the fraction of
the energy emitted att = — g, which s lost through the
boundary T = a and © = —a respectively. The results
are given in Fig. 4: for p = 0, T is, for any a, higher for
fig=1/3 than for z,= —1/3 and is, of course, decreas-
ing when the optical thickness is increased, while R is
higher in the backward-scattering case and increases
with a.

For p = 1, T is zero in any case, while R is strongly
increased in the intermediate range of a and in the
optical-thin limit, where no dependence on the scatter-
ing mode results since, owing to the negligible absor-
ption phenomena, the reflecting wall acts as an
emitting wall equivalent to the one at t = —a. For
high values of a, on the contrary, the presence of the
reflecting wall does not affect the value of R since,
owing to the increased absorption within the parti-
cipating medium, the reflected photons do not succeed
in reaching the boundary T = —a. It must be noted
that, for the isotropic-scattering case, the computed
values of T and R completely reproduce those given in

[3]
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3. SIMPLIFIED APPROACHES AND COMPARISON
OF THE RESULTS WITH THE
RIGOROUS SOLUTIONS

Many approximate techniques are currently used to
solve radiative-transfer problems: some of them are
reviewed, for instance in [8]. The use of any of these
approximations is very appealing since it implies a
drastic simpiification of the mathematics of the pro-
blem: the reliability of the solutions obtained follow-
ing such approaches would nevertheless be checked
against a solution based on a rigorous approach. The
solutions obtained following the approach outlined in
Section 2 have been used therefore as a reference case
to test the solutions obtained following two approx-
imate techniques, namely the kernel substitution and
P, approximation.

The kernel-substitution approach has been used by
Dayan and Tien who studied the case of a slab with
emitting, transparent boundaries, considering both the
cases of pure radiative transfer [5] and of combined
radiative and conductive transport [4]. The approx-
imate solutions were obtained by replacing the
exponential integrals within the two starting integral
equations with exponential functions, since it was
assumed that

E,(t) ~ 2exp(21). (10)

Results were then checked against those obtained from
a purely numerical solution of the two starting integral
equations.

The problem has therefore bzen reworked to include
the case of a reflecting boundary, and, following the
same procedure as in [5], the problem has been
reduced to the solution of two simple ODE, as in [5],
i.e. in our notation:

d21
Pl
, (11)
dgq
hali
dr?

with
b? = (1 — c)}(4 ~ 3ciiy).

In this case the solution of these equations can be given
as

b
Iy(t) = 1—¢ {A; exp[ —b(a + 1]

—c
— Ajexpf — bla — 1)}},

(12)
q(r) = A, exp[ —bla + 1)] + A, exp[—bla — 1)]

where

Ay =
1 Xl

4 —4a[ X, + pX exp(—2ba)]
2

T X2 = X% + 2pX, X, sinh(2ba) (13)
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with

1 _ _ 2
X, = 2—_5[30#0 +@ - 3Cllo)*b""],
(14)
__exp( —2ba)

- _ 2
T Y [36%“(4—30#0);]-

The P, approximation has been used by Lii and Ozisik
[3] for evaluating the hemispherical transmissivity
and reflectivity of a slab with a reflecting boundary
under the assumption of isotropic scattering and
results were tested against those from Case’s method.
When linearly anisotropic scattering is considered,
the P, approximation requires the simple
2
Tl _ 30— a1 ~ oy (15)
to be solved under the following boundary conditions,
expressed through Marshak’s approximation,

(16)
(= ool@)+ 3 2= 50| =0,
The solution can then be given as
Io(t) = A, exp(bt) + A, exp(—b1) {17
where
b? = 3(1 — fige)(1 — ¢) (18)
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Once the distribution of I,(r) has been evaluated, g(t)
can be obtained as
(Ae" — Be™P).

qt) = — 20

b
3(1 — frec)
The distribution of I,(t} and g¢{r) have been then
evaluated for ¢ =09, p=1 and different optical
thicknesses, assuming both forward and backward
scattering.

Results are given in Figs. 5 and 6 where the results
from the rigorous approach are also given. Of course
approximate results are acceptable for low optical
thickness since they essentially depend on the walls’
properties while their accuracy is otherwise quite poor
for intermediate~high values of a, where a significant

0
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Fi1G. 5. Rigorous and simplified approaches: the total radiation intensity /o(t)as a function of t/afor ¢ = 0.9
and p = 1. —— rigorous; — — P, approximation; — — kernel substitution.
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F1G. 6. Rigorous and simplified approaches: the net radiative flux g(t) as a function of t/a for ¢ = 0.9 and
p = 1. —— rigorous; — - — P, approximation; — — kernel substitution.

role is played by the participating medium. As could be
expected the P,-approximation becomes more satis-
factory the higher a.

Recalling the different mathematical sophistication
of the considered approaches, any decision about
relying on or rejecting an approximate solution is left
to the user’s judgement, depending on his particular
needs.
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APPROCHES RIGOUREUSE ET SIMPLIFIEE DU TRANSFERT PAR
RAYONNEMENT DANS UNE PLAQUE ABSORBANTE ET ANISOTROPIQUEMENT
DIFFUSANTE, AVEC FRONTIERE REFLECHISSANTE

Reésumeé—On considére le transfert par rayonnement dans une plaque plane, avec émission diffuse a une
frontiére et une réflexion diffuse & 'autre. Le milieu est supposé a température nulle de telle sorte que
I’émission est négligée et on ne considére que 'absorption et la diffusion. Une solution rigoureuse est
développée en suivant une procédure basée sur des méthodes projectionnelles: les formules résultantes ont
été obtenues numériquement pour obtenir la distribution des variables physiques intéressantes pour
quelques cas significatifs. Les résultats de 'approche rigoureuse sont ensuite utilisés en référence pour tester
des approches simplifiées utilisées dans la bibliographie (approximation P, et substitution du noyau).

STRENGE UND VEREINFACHTE LOSUNG DES STRAHLUNGSWARMEUBERGANGS
IN EINER ABSORBIERENDEN UND ANISOTROP STREUENDEN PLATTE
MIT EINER REFLEKTIERENDEN BEGRENZUNG

Zusammenfassung—In einer ebenen Platte, bei angenommener diffuser Emission an der einen Begrenzung
und diffuser Reflexion an der anderen, wurde der Strahlungswirmeaustausch behandelt. Das Medium soll
die Temperatur Null besitzen, so daBB Emission vernachlassigt werden kann und nur Absorption und Streu-
ung (gemdl einem linearen anisotropen Gesetz) innerhalb der Platte angenommen werden. Es wird eine
strenge Losung entwickelt, die sich an ein Verfahren anlehnt, welches auf Projektionsmethoden beruht : Die
daraus gewonnenen Formeln sind numerisch ausgewertet worden, um die Verteilung der physikalisch rele-
vanten GroBen fiir einige wichtige Fille zu erhalten.

Die Ergebnisse der strengen Losung werden als Vergleichswerte benutzt, um die Zuverldssigkeit der
Ergebnisse einiger vereinfachter Losungen zu testen, die in der Literatur benutzt werden (P -Approximation

und Kernel-Substitution).
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CTPOI'MI M YTPOIUEHHBIE NOAXOAbI K HCCJEAOBAHUIO NMEPEHOCA
W3NIYUYEHHSA B NOTJIOWAKMENR 1 AHU30TPOITHO PACCEUBAIOIIEN TTNUTE
C OTPAXAIOIMEN NOBEPXHOCTLIO

Aunorauns - - PaceMotpen niepeHoc w3iaydeHds BHYITPH [JIOCKOR IPOHMUAEMON [UIMTBI B NPEAN OJIOXKe-
HUH JHGGY3HOH IMHCCHH HA O/IHOM 110BEPXHOCTH H AN(Y3HOTO OTpaxeHus Ha Apyroi. [lpeanosa-
raeTcs, 4TO Cpeda HAXOJAHTCH NPH HYIEBOH TeMuepaType, TdK 4TO MOXHO fipeHeOpedb U3iyqeHHeM,
4 TAKXKE, 4TO HMEIOT MECto T01bK0 aOcopbiius 1 paccesHue (B COOTBETCTBUH C THHEHHO aHU3OTPOIN-
HBIM 3aKk0oHOM). C NOMOLBK [IPOCKIIHOHHBIX METO/I0B [1QJYMEHO CTPOroe peiuenne. B pesynbrate
YHCITEHHOH 06paboTkn pacteTHbIX HOPMYIT Onpeesienbl QUIMYECKHe IIePeMeHHble JIAs PAAa (PAKTH-
YECKH BAXKHBIX C1y4acs.

PesynpTaTsl, NMOJYYEHHBIC Hia OCHOBAHMH CTPOrOro HOAXOId., MCHONB30BATHCHL 3dT€M IR Npo-
BEPKH HACKHOCTH HEKOTOPHIX YNPOMERHBIX METO/A0B, MOMYHSHHbIX APYTHME aBTOpamH (P -annpokcu-

MALIHH H NIOJICTAHOBKH KepHess).



