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Abstract-Radiative transfer has been considered within a plane participating slab assuming diffuse 
emission at one boundary and diffuse reflection at the other boundary. The medium is assumed to be a zero 
temperature one so that emission is neglected and only absorption and scattering (according to a linearly 
anisotropic law) are assumed within the slab. 

A rigorous solution is developed following a constructive procedure based on projectional methods: the 
resulting formulae have been numerically processed to obtain the distribution of the physically relevant 
variables for some significant situations. 

The results from the rigorous approach are then used as reference values to test the reliability of the results 
from some of the simplified approaches used in the literature (P, approximation and kernel substitution). 

NOMENCLATURE 

optical half-thickness ; 
albedo ; 
nth exponential integral; 

angular radiation intensity; 

total radiation intensity; 

net radiative ff ux ; 
forward, backward radiative flux. 

reek symbols 

a, emitted power ; 

irt cosine of the angle between the direction of 
the radiation intensity and the positive T 

axis ; 

&T weighted average of the cosine of the scat- 

tering angle ; 

Pt diffuse reflectivity of the boundary T = a; 

Tr optical coordinate. 

1. INTRODUffION 

IN SOME recent papers rigorous semi-analyti~l ap- 

proaches to the solution of the radiant energy balance 

equation in a plane participating slab have been 

proposed, when radiation can be emitted and reflected 

by the bounding surfaces [1,2]. On the other hand 

many practical problems of physical interest in ra- 

diative transfer are usually investigated through pure 

numerical schemes, or by resorting to very simple 

*Work supported by C.N.R., Roma (Grant 
78.02453.07/i 15.9364). 

approximate techniques [3%5], such as kernel sub- 

stitution, and P, approximation. In any case, many 

authors confine themselves to the evaluation of in- 

tegral quantities, like hemispherical reflectivity and 

transmissivity, and accurate results for the angular 

radiation intensity are seldom available. This paper 

deals with the problem of a low temperature parti- 

cipating medium, which can scatter anisotropically 

and absorb, subject to a diffuse radiation emitted by 

one of its boundaries, while the other is assumed to 

reflect in a diffuse way. This physically-meaningful 

problem has been already studied, at least in some 

particular cases, and partial results have been given 

through either rigorous (Case’s method), or appro- 

ximate, or fully numerical procedures. The present 

solution is constructed following the exact theory 

presented in [2] and [6], which seems to be the most 

straightforward and flexible among the rigorous ones, 

and a complete solution is easily obtained for the 

directional fluxes and all main quantities relevant to 

radiative transfer. Comparison is made with previous 

existing results ; P, approximation and kernel- 

substitution techniques are also worked out to cover 

the situations examined. Since the present results are 

very accurate and reliable they should be used as 

reference results to test the validity and the accuracy of 
the numerical and simplified approaches given in the 

literature. 

2. THE RIGOROUS APPROACH 

2.1. Theory 
According to the theory presented in [6], the 
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angular radiation intensity can be expressed. for the 
physical problem described in the Introduction and in 
the case of linearly anisotropic scattering, in terms of 
its first two Legendre moments as 

(la) 

X s a E&I - r’)f,(z’)dT’ 
-” 

+ 2p-~E3(2a)e-(0-r)'", 
n 

(lb) 

where -a < t 6 a, 0 c p < 1, Q. is the average cosine 
ofthe scattering angle, 1, is the total incident radiation, 
I, = q the net radiative heat flux, and E, denotes the 
generai exponential integral function [7]. Boundary 
conditions are already incorporated in equations (I), 
where CL is the total power emitted by the boundary 
r = -a, and p the diffuse reflectivity of the boundary 

r = a. The moments I, and I, are in turn solutions to 
the system of coupled linear integral equations 

I,(r) = f c 
s 
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H,,(r,r’) I,(r’)dr’ + F,(7), (25) 
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whose kernels are the same as in [6], whereas the 
known terms take the form 

F,(r) = 2aE,+i(U + r) + (-1)‘4p~E,(Za)E,+i(~ - r), 

(3) 
i=o, 1. 

The system is then solved by projection, by resorting to 
the Legendre polynomials P&/a) as coordinate func- 
tions. The result is 

t F,(T). 

(4) 

(5b) 

for the angular radiation intensity. The partial ra- 
diative~uxesq~(?)and q-(r), with q=q&-q-,can be 
also explicitly evaluated as 

x r/:G;(t) + 2aE,(a + r), (6ai 

x {( - l)“G:( -5) f 2pD:E,(u - 7,) 

- 2&E& - r)) + 4paE,(2u)E,(u - r).(6b) 

The functions U:(r), W,(r.p), Gf(r) and the numbers 0; 
are integrals involving exponential integrals and Leg- 
endre polynomials; they can all be written in closed 
analytical form by means of elementary and special 
functions, as shown in [6]. 

At this point only the evaluation of the unknown 
numbers y1: and a,!, which are needed as expansion 
coefficients, must be performed. They follow easily 
from the solution of the linear algebraic system 

r)f, = F; + i 5 _ ~__.?a~__.. ,'&+, 
[(2m + 1)(2n + 1)]1,2 

j-On-0 

(7) 
/?I = 0, I., _, N, ; = 0,l 
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where the matrix elements Gin are given once more in 
[6], and the known terms are now 

Fi =I 2m+l Ii2 
m 

( > 2a 
2aDL[( - 1)” + (- 1)“2pE,(2a)]. 

(8) 
2.2. Results 

In order to investigate the effects of forwardness of 
the scattering and of the reflectivity of the boundary, 
the extreme values of j&, [i.e. &, = l/3 (forward 
scattering), -l/3 (backward scattering)] and p (i.e. 
p = 0, 1) have been considered for any of the optical 
thickness examined. Investigation has been limited to 
situations where scattering phenomena are relevant 
(c = 0.9) and furthermore, the case of isotropic scatter- 
ing (j& = 0) has always been considered as a reference 
case, even if, for the sake of clearness, the results for this 
case are often omitted in the following figures since 
they can be located easily between those for the two 
extreme values of j& 

All the quantities relevant to radiative transfer (lo, 4) 
are defined as moments of different order of the 

angular intensity I(?, p) and therefore attention should 
be given to the distributions of such a variable. 

Figure 1 gives the distribution of I(7, p) at different 
positions within the slab for ,& = l/3 and & = - l/3 
in both the cases of a transparent (p = 0) and totally 
reflecting (p = 1) boundary at r = a. Results are given 
only for a = 1, but the same effects will occur for any 
value of a, even if their relevance depends on a, with 
special regard to the influence of p. 

Since the probability of a photon to proceeding 
further within the slab increases when the forwardness 
increases, in the transparent boundary case, f(r,p) is, 
for any 7, higher for ,& = l/3 than for ji,, = - l/3 when 
p > 0, while the opposite occurs when p < 0. When a 
totally reflecting boundary is considered this trend still 
occurs in points far away from the reflecting boundary, 
while close to it, in a region whose width depends on a, 
the I(7,p) distribution is, for any p, higher in the 
forward scattering case than in the backward one since 
more photons are available for reflection when 
/i. = I/3. 

The distributions occurring for q+, q- and q are 

180’ 
.3 .2 .I 0 

0” 
.I .2 .3 

Fig1 

FIG. 1. Angular distribution for the radiation intensity i(r. p) for u= 1.0, c=O.9. (- BO= I/3; 
- - p0 = i/3). 
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FE. 2. Forwards (q+(r)), backwards (q- (z)) and net (q(1)) radiative flux for u = 1.0, c = 0.9. (-- & = l/3 ; 
--- & = -l/3). 

given in Fig. 2 and the resulting trends can be 
explained straightforwardly on the basis of the results 
given in Fig. 1. 

Whatever the value of p, the q curve for the 
backward scattering is always lower than that for the 
forward case, the difference between the two curves 
decreasing when p is increased. 

The influence of the optical thickness on the IO 
distribution can be grasped from Fig. 3, where the 
distributions of such a variable are given for three 
different values of a, significant of situations where the 
optically thin and thick limits are approached as well 
as of an intermediate situation. 

The crossing occurring between the curves at dif- 
ferent values of fiO for any p and a can be explained 
once more on the basis of the arguments used to justify 
the results of Fig. 1: the curve for PO = l/3 is lower 
than that for &, = - l/3 close to the boundary 
7 = -a, while the opposite occurs close to boundary 
7 = a, since in these two regions of the slab the photons 
available for absorption in the forward-scattering case 
are respectively less, and more than in the backward 
case (it must be recalled that I, is proportional, 
through (1 - c), to the local volumetric rate of energy 
absorption). For p = 1 the curves are strongly in- 
creased and flattened for low values ofa, while they are 

4 

b 
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A I3 C 
a=.1 / a=1 a=2.5 

FIG. 3. The total radiation intensity I,(r) as a function of x/a for c = 0.9. --. &, = 113; - ‘- ,t,, = 0; 
-- jio= -l/3. 
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FIG. 4. The hemisph~ica~ transmissivity 7’ and the bemi- 
spherical reflectivity R of the slab as a function of the optical 
thickness2a.-,&,= l/3;---&,=O;--p,= -l/3. 

noticeably raised only close to the reflecting wall for 
intermediate-high values of a. Finally, it is worth 
considering the hemispherical transmissivity T and 
hemispherical reflectivity R of the slab defined as 

i 

I 

2x f(-a, -&pdp 
R= y;, = q (ob) 

2x 
J 

I(-a,Apdp * 
0 

respectively. These two quantities give the fraction of 
the energy emitted at 7 = -a, which is lost through the 
boundary r = a and T = -a respectively. The results 
are given in Fig. 4 : for p = 0, T is, for any a, higher for 
17, = l/3 than for j& = - l/3 and is, of course, decreas- 
ing when the optical thickness is increased, while R is 
higher in the backward-s~ttering case and increases 
with CZ. 

For p = 1, T is zero in any case, while R is strongiy 
increased in the intermediate range of a and in the 
optical-thin limit, where no dependence on the scatter- 
ing mode results since, owing to the negligible absor- 
ption phenomena, the reflecting wall acts as an 
emitting wall equivalent to the one at r = -a. For 
high values of a, on the contrary, the presence of the 
reflecting wall does not affect the value of R since, 
owing to the increased absorption within the parti- 
cipating medium, the reflected photons do not succeed 
in reaching the boundary 7 = -a. It must be noted 
that, for the isotropic-settling case, the computed 
values of T and R completely reproduce those given in 

C3I* 

3. SIMPLIFIED APPROACHES AND COMPARISON 

OF THE REZXJLTS WITH THE 
RIGOROUS SOLUTIONS 

Many approximate techniques are currently used to 
solve radiative-transfer problems: some of them are 
reviewed, for instance in [S]. The use of any of these 
approximations is very appealing since it implies a 
drastic simplification of the mathematics of the pro- 
blem : the reliability of the solutions obtained follow- 
ing such approaches would nevertheless be checked 
against a solution based on a rigorous approach. The 
solutions obtained following the approach outlined in 
Section 2 have been used therefore as a reference case 
to test the solutions obtained following two approx- 
imate techniques, namely the kernel substitution and 
P, approximation, 

The kernel-substitution approach has been used by 
Dayan and Tien who studied the case of a slab with 
emitting, transparent boundaries, considering both the 
cases of pure radiative transfer [s] and of combined 
radiative and conductive transport [4]. The approx- 
imate solutions were obtained by replacing the 
exponential integrais within the two starting integral 
equations with exponential functions, since it was 
assumed that 

E,(r) 2! 2 exp(2r). (10) 

Results were then checked against those obtained from 
a purely numerical solution of the two starting integral 
equations. 

The problem has therefore been reworked to include 
the case of a reflecting boundary, and, following the 
same procedure as in [S], the problem has been 
reduced to the solution of two simple ODE, as in [5], 
i.e. in our notation: 

d’f, 
- = b21,, 
dr2 

(11) 

with 

d2q - = b2q 
dr2 

bZ = (1 - c)(4 - 3c&). 

In this case the solution of these equations can be given 
as 

M7) = & W expC--Ha + 711 

- AZ ewE - &a - 7111, 

W) 
q(r) = A, exp[ - b(a + z)] + A, exp[ - b(a - T)] 

where 

A, = 
4a - A,X, 

Xl ' 

A, = 
-4a[X, + pX, exp( - 2bu)] 

Xi - Xi + 2pX,Xz sinh(2b~) (13) 
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with 

x, = & I 3c& + (4 - 3&J; 1 , 

(14) 

x = exp( -2ba) 

3c&) 
- - 2 

2+b (4 3&)X 1 

The P, approximation has been used by Lii and Ozisik 
[33 for evaluating the hemispherical transmissivity 
and reflectivity of a slab with a reflecting boundary 
under the assumption of isotropic scattering and 
results were tested against those from Case’s method. 

When linearly anisotropic scattering is considered, 
the P, approximation requires the simple 

d’l,, 
~ = 3(1 - /&c)(l - c)l, 
dr2 

(15) 

to be solved under the following boundary conditions, 
expressed through Marshak’s approximation, 

1 
Jo( -a) _ 1 ~ __..- dlo / 

3 1 - ji,c dr /i=_-y 
= 4a, 

The solution can then be given as 

I,(r) = A, exp(bt) + AZ exp( - b7) 

where 

(17) 

b2 = 3(1 - &,c)(l - c) (18) 

and 

At = 
4aX, 4@X, ~~, A,=--- __ ._.. -.. 

x,x4 - x,x, x,x4 - x2x.3 

(19) 

with 

X3 = expfbu) 
i 

X4 = exp( - ba) 
l-p 2 b 
l+p - - ~--- 

3 1 - I*($ 

Once the distribution of I,(r) has been evaluated, q(T) 
can be obtained as 

4(t) = - 3(1 Jpocj f.42’ - Be-*‘). (21) 

The distribution of I,(Z) and q(r) have been then 
evaluated for c = 0.9, p = 1 and different optical 
thicknesses, assuming both forward and backward 
scattering. 

Results are given in Figs. 5 and 6 where the results 
from the rigorous approach are also given. Of course 
approximate results are acceptable for low optical 
thickness since they essentially depend on the walls’ 
properties while their accuracy is otherwise quite poor 
for intermediate-high values of a, where a significant 

FIG. 5. Rigorous and simplified approaches : the total radiation intensity I,(r) as a function of 7:a for c = 0.9 
and p = 1. _____ rigorous; -~~~ .~ P, approximation; --- kernel substitution. 
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FIG. 6. Rigorous and simplified approaches: the net radiative flux y(r) as a function of T/U for c = 0.9 and 
p = 1. ~ rigorous; -.- P, approximation; -- kernel substitution. 

role is played by the participating medium. As could be 
expected the P,-approximation becomes more satis- 

factory the higher a. 
Recalling the different mathematical sophistication 

of the considered approaches, any decision about 
relying on or rejecting an approximate solution is left 
to the user’s judgement, depending on his particular 

needs. 
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APPROCHES RIGOUREUSE ET SIMPLIFIEE DU TRANSFERT PAR 
RAYONNEMENT DANS UNE PLAQUE ABSORBANTE ET ANISOTROPIQUEMENT 

DIFFUSANTE. AVEC FRONTIERE REFLECHISSANTE 

R&sum&-On considire le transfert par rayonnement dans une plaque plane, avec Cmission diffuse g une 
frontiire et une r6flexion diffuse B l’autre. Le milieu est supposi B temptrature nulle de telle sorte que 
I’imission est nCgligie et on ne considkre que l’absorption et la diffusion. Une solution rigoureuse est 
dCvelopp&e en suivant une procCdure bask sur des methodes projectionnelles: les formules r&&antes ont 
tt6 obtenues numbriquement pour obtenir la distribution des variables physiques inttressantes pour 
quelques cas significatifs. Les resultats de l’approche rigoureuse sont ensuite utilisis en rlf&ence pour tester 

des approches simplifites utilis& dans la bibliographie (approximation P, et substitution du noyau). 

STRENGE UND VEREINFACHTE LOSUNG DES STRAHLUNGSWARMEUBERCANGS 
IN EINER ABSORBIERENDEN UND ANISOTROP STREUENDEN PLATTE 

MIT EINER REFLEKTIERENDEN BEGRENZUNG 

Zusammenfassung-In einer ebenen Platte, bei angenommener diffuser Emission an der einen Begrenzung 
und diffuser Reflexion an der anderen, wurde der Strahlungswarmeaustausch behandelt. Das Medium sol1 
die Temperatur Null besitzen, so dal3 Emission vernachlissigt werden kann und nur Absorption und Streu- 
ung (gemiil3 einem linearen anisotropen Gesetz) innerhalb der Platte angenommen werden. Es wird eine 
,strenge LGsung entwickelt, die sich an ein Verfahren anlehnt, welches auf Projektionsmethoden beruht : Die 
daraus gewonnenen Formeln sind numerisch ausgewertet worden, urn die Verteilung der physikalisch rele- 
vanten Gr6l3en fiir einige wichtige Fille zu erhalten. 

Die Ergebnisse der strengen LGsung werden als Vergleichswerte benutzt, urn die Zuverkissigkeit der 
Ergebnisseeiniger vereinfachter Liisungen zu testen, die in der Literatur benutzt werden (P,-Approximation 

und Kernel-Substitution). 
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